

Goran Jovanovic

Oregon State University School of Chemical, Biological, and Environmental Engineering

Two-Phase-Flow Microchannel Reactors II

In Affiliation With:

MBI Microproducts Breakthrough Institute PTT - LOA

PTT - Laboratories Of America

Problem Outline

- Investigate phenomena pertinent to convection, diffusion, and second order chemical reaction in two-phase immiscible microreaction systems.
- Develop two-dimensional velocity, and diffusion-reaction models to predict conversion in microreactors in which both reactant can freely diffuse into two immiscible phases with a partition coefficient of 1.

The Most Generic Problem Consideration

$$A + B \Longrightarrow R \quad -r_A = kC_A C_B$$

Reactant *B* diffuse into Phase 1, and Reactant *A* diffuse into Phase 2.

Convection-Diffusion-Reaction Equations for Phase 1

reactant A:
$$-u_{1}\frac{\partial C_{A1}}{\partial x} + D_{A1}\frac{\partial^{2}C_{A1}}{\partial x^{2}} + D_{A1}\frac{\partial^{2}C_{A1}}{\partial y^{2}} - kC_{A1}C_{B1} = 0$$

reactant B:
$$-u_{1}\frac{\partial C_{B1}}{\partial x} + D_{B1}\frac{\partial^{2}C_{B1}}{\partial x^{2}} + D_{B1}\frac{\partial^{2}C_{B1}}{\partial y^{2}} - kC_{A1}C_{B1} = 0$$

goran.jovanovic@oregonstate.edu

Boundary Conditions for Phase 1 Mass Balance Equation

goran.jovanovic@oregonstate.edu

Convection-Diffusion-Reaction Equations for Phase 2

reactant A:
$$-u_{2} \frac{\partial C_{A2}}{\partial x} + D_{A2} \frac{\partial^{2} C_{A2}}{\partial x^{2}} + D_{A2} \frac{\partial^{2} C_{A2}}{\partial y^{2}} - kC_{A2}C_{B2} = 0$$

reactant B:
$$-u_{2} \frac{\partial C_{B2}}{\partial x} + D_{B2} \frac{\partial^{2} C_{B2}}{\partial x^{2}} + D_{B2} \frac{\partial^{2} C_{B2}}{\partial y^{2}} - kC_{A2}C_{B2} = 0$$

goran.jovanovic@oregonstate.edu

Boundary Conditions for Phase 2 Mass Balance Equation

goran.jovanovic@oregonstate.edu

Typical Numerical Issues

- 1. How to solve numerical instability at the interface, near the inlet?
- 2. How to determine the velocity profile?

Typical Numerical Issues

Typical Numerical Issues

Typical numerical values for simulation

$$Q_{1} \longrightarrow y = H$$
Phase 1 Reactant A
$$Q_{2} \longrightarrow y = 0$$
Phase 2 Reactant B
$$y = 0$$

$$x = L$$

$$A + B \Rightarrow R -r_{A} = kC_{A}C_{B}$$

$$D_{A1} = 5 \times 10^{-8} [m^{2} / s]$$

$$D_{B1} = 1 \times 10^{-9} [m^{2} / s]$$

$$D_{A2} = 5 \times 10^{-10} [m^{2} / s]$$

$$D_{B2} = 1 \times 10^{-8} [m^{2} / s]$$

$$\rho_{1} = 800 [kg / m^{3}]$$

$$\rho_{2} = 1000 [kg / m^{3}]$$

$$\mu_{1} = 0.8 [kg / m \cdot s]$$

$$\mu_{2} = \mu_{1} / m_{12}$$

$$k = 2.0 [m^{3} / kmol \cdot s]$$

Velocity Profile

Interface Location

Flow Development Length -x

Flow Development Length -x

Concentration contours (*α* =0.4; *Q*₂/*Q*₁=1.5; *H*=100μm)

Concentration contours (*α* =0.5; *Q*₂/*Q*₁=1.5; *H*=100μm)

People. Ideas. Innovation.

Oregon State OSU College of Engineering

goran.jovanovic@oregonstate.edu

Concentration contours (*α* =0.6; *Q*₂/*Q*₁=1.5; *H*=100μm)

$$m_{12} = \frac{\mu_1}{\mu_2} = 0.47$$

goran.jovanovic@oregonstate.edu

Concentration contours (*α* =0.4; *Q*₂/*Q*₁=1.5; *H*=80μm)

$$m_{12} = \frac{\mu_1}{\mu_2} = 16.5$$

goran.jovanovic@oregonstate.edu

Concentration contours (*α* =0.5; *Q*₂/*Q*₁=1.5; *H*=80μm)

$$m_{12} = \frac{\mu_1}{\mu_2} = 3.7$$

goran.jovanovic@oregonstate.edu

Concentration contours (*α* =0.6; *Q*₂/*Q*₁=1.5; *H*=80μm)

$$m_{12} = \frac{\mu_1}{\mu_2} = 0.47$$

People. Ideas. Innovation.

goran.jovanovic@oregonstate.edu

Oregon State OSU College of Engineering

Concentration profile at exit

Peclet Number - Characteristic Times

- Two-dimensional exact solution of velocity profile for two phase flow was successfully derived.
- The interface locations are dependent on flow rate ratio and viscosity ratio between two phase flows.
- The flow rate ratio is more effective to locate interface than viscosity ratio.
- The case where α = 0.6 and H = 80 µm is observed as the fastest reaction process rate for Reactant A compared to the other cases.
- Diffusion dominates transport when Pe<1, and large concentration gradients can be observed when Pe>1.

Three-dimensional models to predict more realistic micro-reaction;

Micro-reaction in flow developing region;

Optimize micro-channel geometry with respect to a defined objective function;

Validate the two-dimensional models by experiment.

People. Ideas. Innovation.

Thank you for your attention!

Special thanks to Prof. In-Won Kim from Konkuk University (Korea) in developing this material.