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Problem Statement

 Investigate phenomena pertinent to convection, diffusion, and
reaction in two-phase immiscible microreaction systems.

» Develop two-dimensional velocity and diffusion-reaction models
for the flow of two immiscible phases to predict conversion in

microreactors.
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Problem Statement

Interface
Q7 $
Phase 1 - reactant A A+B=R -r, = kCACB
Q> />
Phase 2 - reactant B

» Second order chemical reaction;

» Two reactants enter micro-channel separately with different flow rates
Q, and Q,;
» Two reactants have different properties (D,p,u,0)
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Problem Statement

UV-light
‘ source UV transparent
r— window
Interface
1 |___Phase 1 - reactant A A+B=R —r, = kCACB
Second order chemical reaction;
Q>

Phase 2 - reactant B
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Two-Phase Flow in Microchannels

liquid volume fraction
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time

Bubbly flow (U= 5.997 nv/s, Ug = 0.396 m/s)

Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)
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Two-Phase Flow in Microchannels

liquid volume fraction
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Slug tflow (U= 0.608 m/s, Ug = 0.498 m/s)

time
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Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)
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Two-Phase Flow in Microchannels

liquid volume fraction
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Simulated results at different mesh resolutions for straight channel (t=1.0 s)
Mesh 1: 9600 meshes, (0.1 mm x 0.5 mm), Mesh 2: 24000 meshes, (0.1 mm x 0.2 mm)

Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)
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Micro/Meso size Bubbles in Microchannels

Alana Warner Tuhy, M.Sc. Thesis, Oregon State University 2009
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Meso-size Bubbles in Microchannels
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Alana Warner Tuhy, M.Sc. Thesis, Oregon State University 2009
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Problem Consideration
The two fluids may have substantially different properties,
which may create variety of reaction (process) cases:

Viscosity ratio m,,=u./u, influences velocity distribution
and fluid residence time distribution in micro channels;

Diffusion coefficients of reactants A and B determine the
scope & form of the governing differential equation, and
location of the reaction zone;

Different fluid densities may influence the orientation of
micro devices with respect to gravity;

Large surface tension may cause flow maldistribution.
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Problem Consideration

There are additional elements of consideration that are important in
‘constructing’ governing model equations for reaction processes in
microreactors:

Reaction Kkinetics;
Thermodynamic equilibrium;

Phase changes;
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Problem Consideration

Let us first consider different reaction situations that arise
from different reactant diffusivities in the two phases
(predominantly immiscible) in the micro channel reactor;

A+B=R -r,=kC,C,

o e

I:> Phase 2 - reactant B I:>

Reaction Zone

Reactant A diffuses into Phase 2, but
Reactant B does not diffuse into Phase 1.
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Problem Consideration

A+B=R -r,=kC,C,

Reaction Zone

o e

I:> Phase 2 - reactant B I:> I:> Phase 2 - reactant B I:>

Reactant B diffuses into Phase 1, but
Reactant A does not diffuse into Phase 2.
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Problem Consideration

A+B=R -r,=kC,C,

Reaction at interface
only.

o e

I:> Phase 2 - reactant B I:> I:> Phase 2 - reactant B I:>

Reactant B does not diffuse into Phase 1, and
Reactant A does not diffuse into Phase 2.

goran.jovanovic@oregonstate.edu. People. Ideas. Innovation.




s
Problem Consideration

A+B=R -r,=kC,C,

Reaction Zone.

o e

I:> Phase 2 - reactant B I:>

Reactant B diffuse into Phase 1, and
Reactant A diffuse into Phase 2.
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Velocity Profile (two-dimensional, steady-state)

1. Convection Equations

Navier-Stokes Equations

o’u, 1 dP
dy’ H, dx
’u, 1 dP [m,)dP
dy’ Hy dx
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Interface
} Phase 1 /
Y=«
4 Phase 2
y=0 >

X

Boundary Conditions

@ y=H; u, =0

@ y=0; u,=0 (no-slip condition)

@ y=0o; u,=u,

@ y=q; o _

(no— slip condition)

1 du,

dy - m, 0y
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Velocity Profile (two-dimensional, steady-state)

Introduce Non-dimensional variables

, y , U, ’ U,
y = — ul = l/l2 =
N A A
my \ dx my \ dx
Non-dimensional equations Non-dimensional boundary conditions
o’u, ,
5 ,12 =1 (OC <y < 1) @y =1, u, =0 (no- slip condtion)
Y ) @y =0, u, =0 (no- slip condtion)
0’u ,
2 ’ ’ _ _
ayzz — My, (OSy <OC) @y =o, u =u
u @y -a du, 1 du,
— 1 U ’ ’
m, =-— dy m, dy
H,
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Velocity Profile (two-dimensional, steady-state)

Non-dimensional velocity profile equations

|
, y'? —(m12a2 —-o’ +1)
u, =—| =—+Cy +C, (@<y <1) C =2
2 (Oc—l—mlzoc)
’2
/ ’ ’ 1
U, :_(m12y7+m12cly] O=y <a) C, :_(§+Clj

Non-dimensional volume flow rate equations

0, = Jlul'dy'z —[l(l—a3)+g(l—a2)+C2(l—a)}
a 6 2 -
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Velocity Profile
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Fully developed
velocity profiles

Interface locations of
two phase flow

Fixed volume flow rate

ratio (Q,/Q, =1.5)
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Thank you for your attention!

Special thanks to Prof. In-Won Kim from Konkuk University, Korea
in developing this material.




