

Goran Jovanovic

Oregon State University School of Chemical, Biological, and Environmental Engineering

Two-Phase-Flow Microchannel Reactors I

In Affiliation With:

MBI Microproducts Breakthrough Institute PTT - LOA

PTT - Laboratories Of America

Problem Statement

- Investigate phenomena pertinent to convection, diffusion, and reaction in two-phase immiscible microreaction systems.
- Develop two-dimensional velocity and diffusion-reaction models for the flow of two immiscible phases to predict conversion in microreactors.

Problem Statement

- Second order chemical reaction;
- Two reactants enter micro-channel separately with different flow rates Q_1 and Q_2 ;
- Two reactants have different properties (D,ρ,μ,σ)

Problem Statement

Two-Phase Flow in Microchannels

Bubbly flow (U_L = 5.997 m/s, U_G = 0.396 m/s)

Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)

goran.jovanovic@oregonstate.edu.

Two-Phase Flow in Microchannels

liquid volume fraction

Slug flow ($U_L = 0.608 \text{ m/s}$, $U_G = 0.498 \text{ m/s}$)

Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)

goran.jovanovic@oregonstate.edu.

Two-Phase Flow in Microchannels

liquid volume fraction

Simulated results at different mesh resolutions for straight channel (t=1.0 s) Mesh 1: 9600 meshes, (0.1 mm x 0.5 mm), Mesh 2: 24000 meshes, (0.1 mm x 0.2 mm)

Du et al., Two-Phase Flow in Mini Flow Channels International Journal of Chemical Reactor Engineering, Vol[8] article A15 (2010)

goran.jovanovic@oregonstate.edu.

Micro/Meso size Bubbles in Microchannels

Alana Warner Tuhy, M.Sc. Thesis, Oregon State University 2009

goran.jovanovic@oregonstate.edu.

Meso-size Bubbles in Microchannels

Alana Warner Tuhy, M.Sc. Thesis, Oregon State University 2009

goran.jovanovic@oregonstate.edu.

The two fluids may have substantially different properties, which may create variety of reaction (process) cases:

Viscosity ratio $m_{12}=\mu_1/\mu_2$ influences velocity distribution and fluid residence time distribution in micro channels;

Diffusion coefficients of reactants *A* and *B* determine the scope & form of the governing differential equation, and location of the reaction zone;

Different fluid densities may influence the orientation of micro devices with respect to gravity;

Large surface tension may cause flow maldistribution.

Problem Consideration

There are additional elements of consideration that are important in 'constructing' governing model equations for reaction processes in microreactors:

Reaction kinetics;

Thermodynamic equilibrium;

Phase changes;

Let us first consider different reaction situations that arise from different reactant diffusivities in the two phases (predominantly immiscible) in the micro channel reactor;

$$A + B \Longrightarrow R \quad -r_A = kC_A C_B$$

Reactant *A* diffuses into Phase 2, but Reactant *B* does not diffuse into Phase 1.

Problem Consideration

$$A + B \Longrightarrow R \quad -r_A = kC_A C_B$$

Reactant *B* diffuses into Phase 1, but Reactant *A* does not diffuse into Phase 2.

$$A + B \Longrightarrow R \quad -r_A = kC_A C_B$$

Reactant *B* does not diffuse into Phase 1, and Reactant *A* does not diffuse into Phase 2.

Problem Consideration

$$A + B \Longrightarrow R \quad -r_A = kC_A C_B$$

Reactant *B* diffuse into Phase 1, and Reactant *A* diffuse into Phase 2.

Velocity Profile (two-dimensional, steady-state)

1. Convection Equations

Navier-Stokes Equations

$$\frac{\partial^2 u_1}{\partial y^2} = \frac{1}{\mu_1} \frac{dP}{dx}$$

Boundary Conditions (a) y = H; $u_1 = 0$ (no-slip condition) (a) y = 0; $u_2 = 0$ (no-slip condition) (a) $y = \alpha$; $u_1 = u_2$ (b) $y = \alpha$; $\frac{\partial u_1}{\partial y} = \frac{1}{m_{12}} \frac{\partial u_2}{\partial y}$

goran.jovanovic@oregonstate.edu.

Velocity Profile (two-dimensional, steady-state)

Introduce Non-dimensional variables

$$y' = \frac{y}{H} \qquad u_1' = \frac{u_1}{\left(\frac{1}{\mu_1}\left(\frac{dP}{dx}\right)H^2\right)} \qquad u_2' = \frac{u_2}{\left(\frac{1}{\mu_1}\left(\frac{dP}{dx}\right)H^2\right)}$$

Non-dimensional equations

 ~ 2

1

Non-dimensional boundary conditions

$$\frac{\partial^2 u_1}{\partial y'^2} = 1 \qquad (\alpha \le y' \le 1) \qquad @y' = \frac{\partial^2 u_2'}{\partial y'^2} = m_{12} \qquad (0 \le y' < \alpha) \qquad @y' = m_{12} = \frac{\mu_1}{\mu_2} \qquad @y' =$$

@
$$y' = 1$$
, $u_1' = 0$ (no - slip condition)
@ $y' = 0$, $u_2' = 0$ (no - slip condition)

(a)
$$y' = \alpha$$
, $u_1' = u_2'$
(a) $y' = \alpha$, $\frac{\partial u_1'}{\partial y'} = \frac{1}{m_{12}} \frac{\partial u_2'}{\partial y'}$

goran.jovanovic@oregonstate.edu.

Velocity Profile (two-dimensional, steady-state)

Non-dimensional velocity profile equations

$$u_{1}' = -\left(\frac{y'^{2}}{2} + C_{1}y' + C_{2}\right) \qquad (\alpha \le y' \le 1)$$
$$u_{2}' = -\left(m_{12}\frac{y'^{2}}{2} + m_{12}C_{1}y'\right) \qquad (0 \le y' < \alpha)$$

Non-dimensional volume flow rate equations

$$Q_{1} = \int_{\alpha}^{1} u_{1}' dy' = -\left[\frac{1}{6}\left(1 - \alpha^{3}\right) + \frac{C_{1}}{2}\left(1 - \alpha^{2}\right) + C_{2}(1 - \alpha)\right] \qquad m_{12} = \frac{\mu_{1}}{\mu_{2}}$$
$$Q_{2} = \int_{0}^{\alpha} u_{2}' dy' = -m_{12}'\left(\frac{\alpha^{3}}{6} + C_{1}\frac{\alpha^{2}}{2}\right)$$

People. Ideas. Innovation.

 $C_{1} = \frac{\frac{1}{2} \left(m_{12} \alpha^{2} - \alpha^{2} + 1 \right)}{\left(\alpha - 1 - m_{12} \alpha \right)}$

 $C_2 = -\left(\frac{1}{2} + C_1\right)$

Velocity Profile

Fully developed velocity profiles

Interface locations of two phase flow

Fixed volume flow rate ratio ($Q_2/Q_1 = 1.5$)

People. Ideas. Innovation.

Thank you for your attention!

Special thanks to Prof. In-Won Kim from Konkuk University, Korea in developing this material.