Microreactor Engineering

Goran Jovanovic

Oregon State University
School of Chemical, Biological, and Environmental Engineering

Solid Catalyzed Reactions Alternative Boundary Conditions

In Affiliation With:
MBI
Microproducts Breakthrough Institute
PTT = LOA
PTT - Laboratories Of America

Solid Catalyzed Reactions

Consider a homogenous fluid that enters the microchannel vessel at average velocity \bar{v}_{z} containing a reactant A that undergoes catalytic transformation:

$$
A \stackrel{k^{\prime \prime}}{\Rightarrow} B \quad-r_{A}^{\prime \prime}=-\frac{1}{S_{c}} \frac{d N_{A}}{d t}=k^{\prime \prime} C_{A}\left[\frac{\text { moles Areacted }}{m^{2} \text { cat }- \text { surface } \cdot s}\right]
$$

Solid Catalyzed Reactions

Finally, the mathematical model takes the form:

$$
-v_{z}(r) \frac{\partial C_{A}(z, r)}{\partial z}+D_{A} \frac{\partial^{2} C_{A}(z, r)}{\partial z^{2}}+D_{A} \frac{\partial^{2} C_{A}(z, r)}{\partial r^{2}}+\frac{D_{A}}{r} \frac{\partial C_{A}(z, r)}{\partial r}=0
$$

With a choice of two axial boundary conditions (in z direction):

$$
\begin{aligned}
& \text { at } z=0 \quad \frac{\partial C_{A}(0, r)}{\partial z}=0 \quad \text { at } z=0 \quad C_{A}(0, r)=C_{A 0} \\
& \text { at } z=L \quad \frac{\partial C_{A}(L, r)}{\partial z}=0 \quad \text { at } z=L \quad \bar{C}_{A}(L)=C_{A}^{*}
\end{aligned}
$$

Solid Catalyzed Reactions

And boundary conditions in r direction:

$$
\text { atr }=0 \quad \frac{\partial C_{A}(z, 0)}{\partial r}=0
$$

$$
-\left.D \cdot 2 \pi R \cdot d z \frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.2 \pi R \cdot d z \cdot a k^{\prime \prime} C_{A}\right|_{R}
$$

$$
\begin{aligned}
& \text { at } r=R \\
& r=R \quad \frac{\text { moles }}{m^{3} \text { reactor }}
\end{aligned}
$$

Solid Catalyzed Reactions

Similarly we can write for the boundary conditions in r direction:

$$
\text { atr }=0 \quad \frac{\partial C_{A}(z, 0)}{\partial r}=0
$$

$$
\begin{aligned}
& \text { at } r=R \\
& -\left.\underset{\frac{m^{2}}{s}}{D} \underset{m^{2} \text { reactor surf. }}{2 \pi R \cdot d z} \frac{\partial \stackrel{\partial}{C}_{C^{3} \text { reactor }}(z, r)}{\partial r}\right|_{m}=\underset{m^{3} \text { reactor }}{d V_{r}} \cdot \underset{\frac{m^{2} \text { cat-surface }}{m^{3} \text { reactor }}}{S} \cdot \underset{\frac{\text { moles } A \text { reacted }}{m^{2} \text { cat-surfaces }}}{k_{R}^{\prime \prime} C_{A}}{ }_{R} \\
& -\left.D \cdot 2 \pi R \cdot d z \frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\left(\pi R^{2} d z\right) \cdot s \cdot k^{\prime \prime} C_{A}\right|_{R}
\end{aligned}
$$

Solid Catalyzed Reactions: Radial BC's

$$
-\left.D \frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left(\left.a \cdot k^{\prime \prime} C_{A}\right|_{R}\right)\left[\frac{m o l ~ A}{m^{2} \cdot s}\right]
$$

$$
-\left.\frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\frac{a}{D} \cdot k^{\prime \prime} C_{A}\right|_{R}
$$

$$
-\left.D \cdot 2 \pi R \cdot d z \frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\left(\pi R^{2} d z\right) \cdot s \cdot k^{\prime \prime} C_{A}\right|_{R}
$$

$$
-\left.\frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\frac{R \cdot s}{2 D} \cdot k^{\prime \prime} C_{A}\right|_{R}
$$

Solid Catalyzed Reactions

Consider a microchannel vessel with characteristic dimension of approximately $\boldsymbol{R} \approx 100 \mu \mathrm{~m}$, and length L; where $L \ggg \boldsymbol{R}$. In addition consider that a solid catalyzed chemical reaction of known kinetics takes place at the walls of the microreactor vessel. This microreactor consists of three segments, out of which only the middle segment contains catalyst.

$$
\text { Geometric aspect ratio: } \frac{R}{L} \lll 1
$$

Solid Catalyzed Reactions - Open-Open BC

Diff. zone I Reaction zone Diff. zone II $\downarrow 2 R$

$$
\begin{aligned}
& @ z=0 \quad \frac{\partial C_{A}^{I}(l, r)}{\partial \xi}=\frac{\partial C_{A}(0, r)}{\partial z} ; C_{A}^{I}(l, r)=C_{A}(0, r) \\
& @ z=L \quad \frac{\partial C_{A}(L, r)}{\partial z}=\frac{\partial C_{A}^{I I}(0, r)}{\partial \eta} ; C_{A}(L, r)=C_{A}^{I I}(0, r)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial C_{A}(z, 0)}{\partial r}\right|_{r=0}=0 ; \\
& -\left.\frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\frac{a}{D} \cdot k^{\prime \prime} C_{A}\right|_{R} \\
& -\left.\frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\frac{R \cdot s}{2 D} \cdot k^{\prime \prime} C_{A}\right|_{R}
\end{aligned}
$$

Solid Catalyzed Reactions - Open-Open BC

Diff. zone I Reaction zone Diff. zone II $\downarrow 2 R$

$@ \xi=0 \quad \frac{\partial C_{A}^{I}(0, r)}{\partial \xi}=0 ; C_{A}^{I}(0, r)=C_{A o}$
$@ r=0 \quad \frac{\partial C_{A}^{I}(\xi, 0)}{\partial r}=0 ;$
$@ \xi=l \quad \frac{\partial C_{A}^{I}(l, r)}{\partial \xi}=\frac{\partial C_{A}(0, r)}{\partial z} ; C_{A}^{I}(l, r)=C_{A}(0, r)$
$@ r=R \quad \frac{\partial C_{A}^{I}(\xi, R)}{\partial r}=0$
@any $\xi \Rightarrow v_{\xi}(r)=\frac{R^{2}}{4 \cdot \mu}\left(\frac{\Delta \mathrm{P}}{L}\right) \cdot\left[1-\frac{r^{2}}{R^{2}}\right]=2 \bar{v}_{z}\left[1-\frac{r^{2}}{R^{2}}\right]$

Solid Catalyzed Reactions - Open-Open BC

Diff. zone I Reaction zone Diff. zone II

$$
\begin{array}{ll}
@ \eta=0 \quad \frac{\partial C_{A}^{I I}(0, r)}{\partial \eta}=\frac{\partial C_{A}(L, r)}{\partial z} ; C_{A}^{I I}(0, r)=C_{A}(L, r) & @ r=0 \quad \frac{\partial C_{A}^{I I}(\eta, 0)}{\partial r}=0 ; \\
@ \eta=l \quad \frac{\partial C_{A}^{I I}(l, r)}{\partial \eta}=0 ; \text { and or } \bar{C}_{A}^{I I}(l)=C_{A}^{*} & @ r=R \quad \frac{\partial C_{A}^{I I}(\eta, R)}{\partial r}=0
\end{array}
$$

@any $\eta \Rightarrow v_{\eta}(r)=\frac{R^{2}}{4 \cdot \mu}\left(\frac{\Delta \mathrm{P}}{L}\right) \cdot\left[1-\frac{r^{2}}{R^{2}}\right]=2 \bar{v}_{z}\left[1-\frac{r^{2}}{R^{2}}\right]$

The Origin of Characteristic Times

Consider the governing differential equation for a microchannel reactor in which a chemical reaction take place in a catalyst layer at the walls of the microreactor.

$$
\begin{aligned}
& -v_{z}(r) \frac{\partial C_{A}(z, r)}{\partial z}+D_{A} \frac{\partial^{2} C_{A}(z, r)}{\partial z^{2}}+D_{A} \frac{\partial^{2} C_{A}(z, r)}{\partial r^{2}}+\frac{D_{A}}{r} \frac{\partial C_{A}(z, r)}{\partial r}=0 \\
& \text { where at any } z \Rightarrow v_{z}(r)=2 \bar{v}_{z}\left[1-\frac{r^{2}}{R^{2}}\right]
\end{aligned}
$$

After the change of variables and all substitutions:

$$
r^{*}=\frac{r}{R} ; \quad z^{*}=\frac{z}{L} ; \quad C_{A}^{*}=\frac{C_{A}}{C_{A o}} \Rightarrow r=r^{*} R ; \quad z=z^{*} L ; \quad C_{A}=C_{A}^{*} C_{A o} ;
$$

one can obtain:

$$
-\frac{\bar{v}_{z}}{L} 2\left[1-\left(r^{*}\right)^{2}\right] \frac{\partial C_{A}^{*}}{\partial z^{*}}+\frac{D_{A}}{L^{2}} \frac{\partial^{2} C_{A}^{*}}{\partial\left(z^{*}\right)^{2}}+\frac{D_{A}}{R^{2}} \frac{\partial^{2} C_{A}^{*}}{\partial\left(r^{*}\right)^{2}}+\frac{D_{A}}{R^{2}} \frac{1}{r^{*}} \frac{\partial C_{A}^{*}}{\partial r^{*}}=0
$$

The origin of Characteristic Times

The coefficients in the normalized differential equation represent the characteristic times that we consider earlier:

$$
-\left(\frac{\bar{v}_{z}}{L}\right) 2\left[1-\left(r^{*}\right)^{2}\right] \frac{\partial C_{A}^{*}}{\partial z^{*}}+\left(\frac{D_{A}}{L^{2}}\right) \frac{\partial^{2} C_{A}^{*}}{\partial\left(z^{*}\right)^{2}}+\left(\frac{D_{A}}{R^{2}}\right)\left[\frac{\partial^{2} C_{A}^{*}}{\partial\left(r^{*}\right)^{2}}+\frac{1}{r^{*}} \frac{\partial C_{A}^{*}}{\partial r^{*}}\right]=0
$$

or equivalently:

The origin of Characteristic Times

Similarly, from the boundary condition: $-\left.\frac{\partial C_{A}(z, r)}{\partial r}\right|_{R}=\left.\frac{R \cdot S}{2 D} k^{\prime \prime} C_{A}\right|_{R}$
and change of variables:

$$
r=r^{*} R ; \quad z=z^{*} L ; \quad C_{A}=C_{A}^{*} C_{A o}
$$

one can obtain:

$$
-\left.2\left(\frac{D}{R^{2}}\right) \frac{\partial C_{A}^{*}}{\partial r^{*}}\right|_{R}=\left.\left(s \cdot k^{\prime \prime}\right) C_{A}^{*}\right|_{R}
$$

or equivalently:

where: $s=\frac{\text { surface of catalyst }\left[m^{2}\right]}{\text { volume of reactor }\left[m^{3}\right]}=\frac{S_{c}}{V_{r}}\left[m^{-1}\right]$

Oregon State College of Engineering

People. Ideas. Innovation.

Thank you for your attention!

