

Goran Jovanovic

Oregon State University School of Chemical, Biological, and Environmental Engineering

Solid Catalyzed Reactions

In Affiliation With:

MBI

Microproducts Breakthrough Institute

PTT - LOA

PTT - Laboratories Of America

Consider a microchannel vessel with characteristic dimension of approximately $R \approx 100 \mu m$, and length L; where L >>> R. In addition consider that a solid catalyzed chemical reaction of known kinetics takes place <u>at the walls</u> of the microreactor vessel.

goran.jovanovic@oregonstate.edu.

Catalyst and Definition of Reaction Rates

Most of definitions for the intrinsic chemical reaction kinetics in solid catalyzed chemical reactions evolved form the consideration of a chemical reaction processes performed in packed bed reactors with solid catalyst.

Reaction Rate Definitions

In catalytic systems the rate of reaction can be expressed in one of many equivalent ways (for the first order representation of a heterogeneous catalytic reaction);

$$-r_{A}^{\prime} = -\frac{1}{V_{\varepsilon}} \frac{dN_{A}}{dt} = kC_{A} \left[\frac{moles \ reacted}{m^{3} \ voids \cdot s} \right] \qquad \begin{array}{l} \text{Based on volume of } \\ \text{voids in the reactor} \end{array}$$
$$-r_{A}^{\prime} = -\frac{1}{W_{c}} \frac{dN_{A}}{dt} = k^{\prime}C_{A} \left[\frac{moles \ reacted}{kg \ catalyst \cdot s} \right] \qquad \begin{array}{l} \text{Based on weight of } \\ \text{catalyst pellets} \end{array}$$
$$-r_{A}^{\prime\prime} = -\frac{1}{S_{c}} \frac{dN}{dt} = k^{\prime\prime}C_{A} \left[\frac{moles \ reacted}{m^{2} \ cat} - surface \cdot s} \right] \qquad \begin{array}{l} \text{Based on catalyst } \\ \text{Based on catalyst } \\ \text{surface} \end{array}$$

Reaction Rate Definitions

$$-r_{A}''' = -\frac{1}{V_{p}} \frac{dN_{A}}{dt} = k'''C_{A} \left[\frac{moles\,reacted}{m^{3}solids \cdot s}\right]$$

Based on volume of catalyst pellets

$$-r_{A}^{*} = -\frac{1}{V_{r}}\frac{dN_{A}}{dt} = k^{*}C_{A}\left[\frac{moles\,reacted}{m^{3}\,reactor\cdot s}\right]$$

Based on total reactor volume

Consider a homogenous fluid that enters the microchannel vessel at average velocity \overline{v}_{j} containing a reactant *A* that undergoes catalytic transformation:

$$A \stackrel{k''}{\Longrightarrow} B \qquad -r_A'' = -\frac{1}{S_c} \frac{dN_A}{dt} = k'' C_A \left[\frac{moles \ A \ reacted}{m^2 \ cat - surface \cdot s} \right]$$

goran.jovanovic@oregonstate.edu.

$$-r_{A}'' = -\frac{1}{S_{c}} \frac{dN_{A}}{dt} = k''C_{A} \left[\frac{moles \ A \ reacted}{m^{2} cat - surface \cdot s}\right]$$

goran.jovanovic@oregonstate.edu.

material entering at *z* by convection:

$$v_z(r) \cdot 2\pi r \cdot dr \cdot C_A(z,r) \Big|_z \Delta t [mol]$$

material entering at z by diffusion:

$$-D_{A}2\pi r \cdot dr \cdot \frac{\partial C_{A}(z,r)}{\partial z} \bigg|_{z} \Delta t \big[mo$$

goran.jovanovic@oregonstate.edu.

Similarly, we have convective and diffusive mass transfer at the other end of the differential fluid volume:

material leaving at *z***+d***z* by convection: $v_z(r) \cdot 2\pi r \cdot dr \cdot C_A(z,r) \Big|_{z+dz} \Delta t [mol]$

material leaving at z+dz by diffusion: $-D_A 2\pi r \cdot dr \cdot \frac{\partial C_A(z,r)}{\partial z} = \Delta t [mol]$

goran.jovanovic@oregonstate.edu.

There is also diffusive mass transfer in the radial direction IN and OUT of the differential fluid volume (no convective flow in the radial direction):

material leaving at (*r*+*dr*) by diffusion:

$$-D_{A}(2\pi r) \cdot dz \cdot \frac{\partial C_{A}(z,r)}{\partial r} \bigg|_{r+dr} \Delta t [mol]$$

goran.jovanovic@oregonstate.edu.

Finally: Do we have to account for the mass of reactant *A* that disappears by the chemical reaction in the differential volume of fluid?

NO - Reaction takes place in the catalyst layer; which is on the walls of the microchannel; thus, reaction will be part of the boundary condition!

The overall material balance of the reactant A in the differential volume of fluid is given by:

Input - Output = Accumulation

accumulation term

Divide the whole equation by:
$$\left\{2\pi \cdot dr \cdot dz \cdot \Delta t\right\}$$

 $v_{z}(r) \cdot r \frac{\left[C_{A}(z,r)\big|_{z} - C_{A}(z,r)\big|_{z+dz}\right]}{dz} + D_{A}r \frac{\frac{\partial C_{A}(z,r)}{\partial z}\Big|_{z+dz} - \frac{\partial C_{A}(z,r)}{\partial z}\Big|_{z}}{dz}$
 $+ D_{A} \frac{\left[r \frac{\partial C_{A}(z,r)}{\partial r}\Big|_{r+dr} - r \frac{\partial C_{A}(z,r)}{\partial r}\Big|_{r}\right]}{dr} = \frac{r\left(C_{A}\big|_{t+\Delta t} - C_{A}\big|_{t}\right)}{\Delta t}$

Find a limes of the above equation and let: $\Delta t \rightarrow 0$, $dr \rightarrow 0$, $dz \rightarrow 0$,

$$-v_{z}(r) \cdot r \frac{\partial C_{A}(z,r)}{\partial z} + D_{A}r \frac{\partial^{2} C_{A}(z,r)}{\partial z^{2}} + D_{A} \frac{\partial \left(r \frac{\partial C_{A}(z,r)}{\partial r}\right)}{\partial r} = r \frac{\partial C_{A}}{\partial t}$$

goran.jovanovic@oregonstate.edu.

And at steady state:

goran.jovanovic@oregonstate.edu.

With a choice of two axial boundary conditions (in z direction):

goran.jovanovic@oregonstate.edu.

And boundary conditions in *r* direction:

$$at \ r = 0 \quad \frac{\partial C_A(z,0)}{\partial r} = 0$$

$$c_{Ao}; \overline{v_z} \quad f^{r+dr} \quad \overline{v_z} \quad \overline{v_z}$$

at
$$r = R$$

$$-\underbrace{D}_{\frac{m^{2}}{s}}\underbrace{2\pi R \cdot dz}_{m^{2} reactor surf.}} \frac{\underbrace{\partial C_{A}(z,r)}{\partial C_{A}(z,r)}}{\underset{m}{\partial r}_{m}} = \underbrace{dV_{r}}_{m^{3} reactor} \cdot \underbrace{s}_{m^{2} cat-surface} \cdot \underbrace{k'' C_{A}}{\underset{m^{3} reactor}{m^{3} reactor}} \underbrace{moles \ A \ reacted}{\underset{m^{2} cat-surface}{m^{2} cat-surface \cdot s}}_{R}$$

goran.jovanovic@oregonstate.edu.

Or alternatively we could define the boundary condition at the wall at **r** = **R**

$$at \ r = R$$

$$- \underbrace{D}_{\frac{m^2}{s}} \underbrace{2\pi R \cdot dz}_{m^2 reactor \ surf.} \underbrace{\frac{\partial r}{\partial r}}_{m} = \underbrace{dA}_{m^2 of \ reactor} \underbrace{\frac{\partial r}{m^2 of \ reactor}}_{wall \ surface} \underbrace{\frac{m^2 cat - surface}{m^2 of \ reactor}}_{wall \ surface} \underbrace{\frac{m^2 cat - surface}{m^2 cat - surface \cdot surface \cdot surface}}_{m^2 cat - surface \cdot surface \cdot surface \cdot surface \cdot surface} \underbrace{\frac{m^2 cat - surface}{m^2 cat - surface \cdot s$$

r+dr

People. Ideas. Innovation.

Solid Catalyzed Reactions – Laminar velocity profile

The differential equation contains functions like : C_A^* and $v_z(r)$

$$C_{A}^{*}(L) = \frac{\int_{0}^{R} 2\pi r \cdot v_{z}(r) \cdot C_{A}(L,r) \cdot dr}{\int_{0}^{R} 2\pi r \cdot v_{z}(r) \cdot dr}$$

The velocity profile is relatively easy to obtain; see handout notes. For the laminar flow in pipe the velocity distribution is:

$$v_{z}(r) = \frac{R^{2}}{4 \cdot \mu} \left(\frac{\Delta P}{L}\right) \cdot \left[1 - \frac{r^{2}}{R^{2}}\right] \quad at \ r = 0 \quad v_{z}(r) = v_{z}(r) = \frac{R^{2}}{4 \cdot \mu} \left(\frac{\Delta P}{L}\right)$$

goran.jovanovic@oregonstate.edu.

People. Ideas. Innovation.

Thank you for your attention!