

Goran Jovanovic

Oregon State University School of Chemical, Biological, and Environmental Engineering

Homogenous Reactions in Microreactors Alternative Boundary Conditions

In Affiliation With:

MBI

Microproducts Breakthrough Institute

PTT - LOA

PTT - Laboratories Of America

Summary for Homogenous Reaction in Microreactors:

Alternative BC for Homogenous Reaction in Microreactors

Alternative BC for Homogenous Reaction in Microreactors

Alternative BC for Homogenous Reaction in Microreactors

The origin of Characteristic Times

Consider the governing differential equation for a microchannel reactor in which a chemical reaction take place in a catalyst layer at the walls of the microreactor.

$$-v_{z}(r)\frac{\partial C_{A}(z,r)}{\partial z} + D_{A}\frac{\partial^{2}C_{A}(z,r)}{\partial z^{2}} + D_{A}\frac{\partial^{2}C_{A}(z,r)}{\partial r^{2}} + \frac{D_{A}}{r}\frac{\partial C_{A}(z,r)}{\partial r} - kC_{A} = 0$$

$$where at any z \Rightarrow v_{z}(r) = 2\overline{v}_{z}\left[1 - \frac{r^{2}}{R^{2}}\right]$$

After the change of variables:

$$r^* = \frac{r}{R}; \quad z^* = \frac{z}{L}; \quad C_A^* = \frac{C_A}{C_{Ao}} \implies r = r^*R; \quad z = z^*L; \quad C_A = C_A^*C_{Ao};$$

and all substitutions, one can obtain:

$$-\frac{\overline{v}_z}{L}2\left[1-\left(r^*\right)^2\right]\frac{\partial C_A^*}{\partial z^*}+\frac{D_A}{L^2}\frac{\partial^2 C_A^*}{\partial \left(z^*\right)^2}+\frac{D_A}{R^2}\frac{\partial^2 C_A^*}{\partial \left(r^*\right)^2}+\frac{D_A}{R^2}\frac{\partial C_A^*}{\partial \left(r^*\right)^2}-kC_A^*=0$$

The origin of Characteristic Times

The coefficients in the normalized differential equation represent the characteristic times that we consider earlier:

$$-\left(\frac{\overline{v}_{z}}{L}\right)2\left[1-\left(r^{*}\right)^{2}\right]\frac{\partial C_{A}^{*}}{\partial z^{*}}+\left(\frac{D_{A}}{L^{2}}\right)\frac{\partial^{2}C_{A}^{*}}{\partial \left(z^{*}\right)^{2}}+\left(\frac{D_{A}}{R^{2}}\right)\left[\frac{\partial^{2}C_{A}^{*}}{\partial \left(r^{*}\right)^{2}}+\frac{1}{r^{*}}\frac{\partial C_{A}^{*}}{\partial r^{*}}\right]-\left(k\right)C_{A}^{*}=0$$

or equivalently:

Microreactors For Biodiesel Production

- Tiny parallel channels 100 microns wide are embossed into a polymer plate about the size of a credit card.
- Thin streams of alcohol and oil are injected into each channel.
- Because the alcohol and oil molecules are in close contact all along the channel, the chemical reaction that converts them into biodiesel happens *faster* than in a large macroscopic vessel.
- Thousands of these microchannels stacked side-by-side create a microreactor the size of a suitcase that could produce approximately 0.5 M-Gal of biodiesel a year.

Biodiesel Synthesis in Microscale Reactors

People. Ideas. Innovation.

Thank you for your attention!