Guidelines for Homework Preparation

All homework should be submitted by 10:00 a.m. due-date. Homework should be submitted in a 'paper' form and should have all sections as described in **Outline For Homework Problem Format** below. We strongly suggest that you use word processor to write homework assignments. More importantly all equations should be generated by equation editor (MathType is really good).

- Use clean, A4 size paper. Engineering paper is OK.
- Write/print on only one side of the paper.
- Write/print the following in the upper right-hand corner of each page

Your Name Due Date, Assignment No Page number/total pages

- Securely staple all pages; do not fold or paper clip together.
- Show all of your work. Draw a block around your final answer(s).
- For graphical solutions, use graph paper, only. Label the axes of your graph and include units.
- Use computer generated plots; or a straight edge when making figures and graphs.
- Provide computer program listings, if used, on a separate sheet.
- You may use spreadsheet program whenever appropriate.
- Start a new problem on a new sheet of paper.
- Neatness is important and appreciated.

Outline For Homework Problem Format

Problem Statement

Contains a statement of the problem to be solved. Usually, the problem statement will be given by your instructor.

Illustration

Illustrate the physical system; draw in the system boundary.

Assumptions

List assumptions and conditions that are used in problem formulation. List simplifying assumptions that reduce unnecessary problem complexity. List mathematical assumptions that facilitate analytical solution.

List of Variables

Provide an alphabetical list of variables used in your model. Give a brief description and units of each variable.

Mathematical Model

Develop a mathematical description of the physical system, i.e. formulate the model equations. Perform shell balance on differential element of space and/or time if required. Reduce shell balance to the differential model equations. Select boundary and/or initial conditions.

Solve the Model

Use appropriate analytical technique to solve obtained algebraic/differential equation(s). If necessary or required solve the model numerically.

Brief Discussion of Results

Verify model results/predictions. Discuss the results of your solution. How well did your solution/algorithm work? Include comments on any particular difficulties and how they might be alleviated.